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All our dignity consists therefore of thought.
It is from there that we must be lifted up and not
from time and space, which we could never fill.

So let us work on thinking well.

— Blaise Pascal

For all those who taught me to love learning.





A B S T R A C T

A newcomer the greater story of mathematics, free analysis seeks to
understand functions that accept matrices of arbitrary sizes as inputs.
Despite the fact that these functions are naturally noncommutative,
many classical results from the study of complex variables and real
algebraic geometry have direct analogues in this new setting. Unfor-
tunately, the topological underpinnings are still in flux. In this thesis
we cover recent efforts to address these issues—including the first
developments of a theory of algebraic topology of matrix domains.
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I would contend at all costs both in word and deed
as far as I could that we will be better men, braver
and less idle, if we believe that one must search for

the things one does not know, rather than if we believe
that it is not possible to find out what we do not know

and that we must not look for it.

— Plato
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Part I

O B J E C T S A N D T H E M A P S B E T W E E N T H E M

“Young man, in mathematics you don’t understand things. You
just get used to them”

— John von Neumann





1
A F I R S T AT T E M P T

The fields of free analysis and noncommutative function theory are
in their (comparative) infancy. Seeking to understand functions of
noncommuting indeterminants, so-called “free functions” have a natu-
ral evaluation on tulpes of matrices. In this thesis, we introduce the
basic objects and maps that underly free analysis—chapter 1 first does
this through considering polynomials and chapter 2 generalizes the
work of chapter 1 to include more exotic functions. Then in, part ii, we
explore some of the major results in generalizing algebraic geometry
and topology.

Before we get into the meat, a few preliminary pieces of notation: Un

will denote the set of n× n unitary matrices. Unless otherwise stated,
all maps are morphisms in their respective categories. 1

1.1 functional calculus

Functional Calculus is the process of extending the domain of a func-
tion on R to include matrices (or in some cases operators). The most
basic formulation uses the fact that the space n× n matrices forms a
ring and so there is a natural way to evaluate polynomials f ∈ C[x]. If
we require that A ∈ Mn(C) is self-adjoint—and hence diagonalizable
as A = UΛU∗—then it is a standard result that:

f (A) = an An + · · ·+ a1A + a0 In

= an (UΛU∗)n + · · ·+ a1UΛU∗ + a0 In

= anUΛnU∗ + · · ·+ a1UΛU∗ + a0 In

= U (anΛn + · · ·+ a1Λ + a0 In)U∗

= U ( f (Λ))U∗

Further, since Λ is diagonal and f is a polynomial,

f




λ1
. . .

λn


 =


f (λ1)

. . .

f (λn)


Therefore, given a self-adjoint matrix A and a polynomial f ∈ C[x]

f (A) = U f (Λ)U∗ = U diag{ f (λ1), . . . , f (λn)} U∗

1 Those fearful of category theory need not despair, this thesis only invokes a universal
property once.

3



4 a first attempt

Notice that can simply substitute A in for x without any trouble as
long as we transform the constant term a0 7→ a0 In when evaluating
on n× n matrices.2 Since self-adjoint matrices play such a vital role
in free analysis, we will let Hn ⊂ Mn(C) denote the set of n× n self
adjoint matrices over C. With the polynomial case in mind, we can
extend a function g : [a, b]→ C to a function on self adjoint matrices
with their spectrum in [a, b]. Let A be such a matrix (diagonalized by
the unitary matrix U), and define

g(A) := U


g(λ1)

. . .

g(λn)

U∗

Thus, for each n ∈ N, g induces a function on the self-adjoint n× n
matrices with spectrum in [a, b]. Many properties of functions of a
single real variable utilize the fact that R is totally ordered. While
there is not a total ordering on H, there is a partial ordering; the
natural ordering on self-adjoint matrices is called the Loewner Order:

Definition i.1 (Loewner Ordering). For like size self-adjoint matrices, we
say that A ⪯ B if B− A is positive semidefinite and A ≺ B is B− A is
positive definite.

With this ordering in place, we can extend many of the familiar
function theoretic properties (monotonicity, convexity) to these matrix-
valued functions. In fact, these properties are defined identically to
their classical counterpart. We say that a function is matrix-monotone if
A ⪯ B implies that f (A) ⪯ f (B) and matrix-convex (or nc-convex) if

f
(

A + B
2

)
⪯ f (A) + f (B)

2

for every pair of like-size matrices, A and B, for which f is defined.
These condition are rather restrictive (since the must hold for matri-
ces of all sizes) so many functions which are convex/monotone (in
the traditional sense) fail to be matrix-convex/monotone. For a full
treatment of nc-convexity, see [10]. To illustrate the restrictiveness of
nc-convexity, consider the following example.

Example i.2. In contrast to the real (or even complex) case, f (x) = x4 fails
to be nc-convex. Indeed, if

X =

[
4 2

2 2

]
and Y =

[
2 0

0 0

]
Then

X4 + Y4

2
−

(
1
2

X +
1
2

Y
)4

=

[
164 120

120 84

]
,

2 Technically we have a0 7→ a0 ⊗ In but they are identical in this case. It is common in
free analysis to tensor by In to make the matrices compatible.
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which is not positive definite! Thus x4 fails to be convex on even 2 × 2
matrices.

Further, a number of the standard constructions lift identically in
this functional calculus.

Definition i.3 (Directional Derivative). The derivative of f in the direction
H is

D f (X)[H] := lim
t→0

f (X + tH)− f (X)

t

where H and X are like-size self-adjoint matices.

Often, the best way to compute these directional derivatives is via
an equivalent formulation:

D f (X)[H] =
d f (X + tH)

dt

∣∣∣∣
t=0

This version allows us to more easily define higher order derivatives

D(k) f (X)[H] =
d(k) f (X + tH)

d(k)t

∣∣∣∣∣
t=0

Notice that this formulations requires each derivative to be in the
same direction. Higher order derivatives in different directions clearly
exist (simply nest the limits), but their complexity grows quickly. For
example, the second derivative in two directions, first H and then K is
given by

D2 f (X)[H][K] = lim
t→0

D f (X + tK)[H]− D f (X)[H]

t
.

Example i.4. Just as in the classical case, the directional derivative is linear,
so we will only show a calculation of a monomial. Let f (x) = x3. Since X
and H do not commute,

f (X + tH) = X3 + tX2H + tXHX + t2XH2

+ tHX2 + t2HXH + t2H2X + t3H3.

From here, we can calculate:

d
dt

f (X + tH) = X2H + XHX + 2tXH2 + HX2

+ 2tHXH + 2tH2X + 3t2H3

d2

dt2 f (X + tH) = 2XH2 + 2HXH + 2H2X + 6tH3

d3

dt3 f (X + tH) = 6H3.
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And so the first 3 directional derivatives are:

D f (X)[H] = X2H + XHX + HX2

D(2) f (X)[H] = 2XH2 + 2HXH + 2H2X

D(3) f (X)[H] = 6H3

In general, the k-th derivative of a polynomial is degree k as a polynomial in
H.

Just as in the classical case, the second derivative gives us informa-
tion about the convexity of a function. A function f : Mn(C)→ Mn(C)

is said to be positive if 0 ⪯ A =⇒ 0 ⪯ f (A). In the functional calcu-
lus, we say that f is nc positive if it is positive as a map on Mn(C) for
all n. Despite nc-convexity being so restrictive, Lemma 12 in [10] shows
that the standard characterization of convexity via the second deriva-
tive: a function f is convex if and only if D2 f (X)[H] is nc-positive.
Unlike the classical case, however, the only convex polynomials are of
degree 2.3

1.2 extending multi-variable functions

We can extend this same functional calculus to functions of several
variables, although the details are a bit more subtle. We could simply
“plug in” a tuple of matrices to a standard multivariable polynomial
ring over R or C, but this ignores the noncommutativity of Mn(C).

For example, consider p ∈ C[x, y] defined by

p(x, y) = xy = yx.

If we were to evaluate p on X, Y ∈H2, should it be

p(X, Y) = XY, P(X, Y) = YX, or p(X, Y) =
XY + YX

2
?

It is evident, then, that C[x1, . . . , xn] is not the algebra of polynomials
that we should use. In light of this, let x = (x1, . . . xg) be a g-tuples of
noncommuting formal variables. The formal variables x1, . . . , xn are
free in the sense that there are no nontrivial relations between them.4

A word in x is a product of these variables (e. g.x1x3x1x2
4 or x2

1x3
5). An

nc polynomial in x is a formal finite linear combination of words in
x with coefficients in your favorite field. We use R⟨x⟩ and C⟨x⟩ to
denote the set of nc-polynomials in x over R or C respectively.

3 See [10] for details.
4 This becomes important in the eventual functional calculus—matrices do have non-

trivial relations. We solve this by creating so-called “generic matrix” rings. [14] and
[13] contain the construction as well as a list of further sources.
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With C⟨x⟩ constructed, we can define the functional calculus. Given
a word w(x) = xp1

i1
· · · xpd

id
and a g-tuple of self-adjoint matrices, X, we

can evaluate w on X via w(X) = Xp1
i1
· · ·Xpd

id
. Since our nc-polynomials

are linear combinations of these words, we can extend this evaluation
to evaluation of entire polynomials. Algebraically, we have a natural
evaluation map: Given some f ∈ C⟨x⟩ and X =

(
X1, . . . , Xg

)
a g-tuple

of self-adjoint matrices, define

ε f : H•
g −→ M•(C)

X 7−→ f (X).

Notice that our functions are graded in the sense that if X is a tuple
of n× n matrices, then f (X) is an n× n matrices.

Example i.5. Let f (x, y) = x2 − xyx + 1 ∈ R⟨x, y⟩. If we define

X =

[
4 2

2 2

]
and Y =

[
2 0

0 0

]

as before, then

f (X, Y) = X2 − XYX + I2

=

[
4 2

2 2

]2

−
[

4 2

2 2

] [
2 0

0 0

] [
4 2

2 2

]
+

[
1 0

0 1

]

=

[
−11 −4

−4 1

]
.

Additionally,

f (X⊕ X, Y⊕Y) =


−11 −4 0 0

−4 1 0 0

0 0 −11 −4

0 0 −4 1


= f (X, Y)⊕ f (X, Y).

It is no accident that polynomials handle direct sums of matrices
well. As in the classical case, they are the “well behaved” example
which we would like general objects to emulate. In the next chapter,
we will define free functions—which behave like nc polynomials.

In the context of these multivariate functions, our definition of the
Directional Derivative still makes sense (although our direction H now
becomes a tuple of directions). We also inherit (from multi-variable
calculus) a notion of the gradient of a function—but this will require
a bit more work.
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1.2.1 The Natural Involution on nc Polynomials

Given our ring of nc polynomials,5 we may define an involution ∗

which we may view as an extension of the conjugate transpose. Let ∗

reverse the order of words (i. e.(x1x3x2
2)
∗ = x2

2x3x1) and extend linearly
to all of R⟨x⟩. We consider the formal variables x1, . . . , xn symmetric
in the sense that x∗i = xi. We say that a polynomial p ∈ R⟨x⟩ is
symmetric if p∗ = p. For example, if

p(x) = 5x2
1x3x2 + x3x2x3 q(x) = 3x2x1x2 + x2

3 − x1,

then a cursory inspection tells that q is symmetric while p is not.
Consider the case of plugging in non-self-adjoint matrices. We can

still evaluate polynomials on arbitrary matrices, but the involution
described above is no longer appropriate. Since the involution is
analogous to taking the conjugate transpose after evaluation, if we
are evaluating on arbitrary matrices, our variables should distinguish
between xi and x∗i . Thus, if we want to allow evaluation on arbitrary
matrices, R⟨x⟩ is no longer the natural algebra we should work with.

Let x = (x1, . . . , xg) be formal variables and let x∗ = (x∗1 , . . . , x∗g)
denote their formal adjoints. Once again, we let the ring R⟨x, x∗⟩ be
the finite formal sums of words in x1, x∗1 , . . . , xg, x∗g with coefficients
in R. Endow R⟨x, x∗⟩ with an involution ∗ which sends xi 7→ x∗i and
x∗i 7→ xi and reverses the order of words extended linearly. Notice
that this involution behaves identically to the adjoint with respect
to products and sums of matrices. This new ring inherits a natural
functional calculus just like that in section 1.2 except it can accept any
matrix as an input instead of simply self-adjoint matrices.

Example i.6. Let f (x, y) = x∗y− xy∗x + 2. Then

f ∗(x, y) = y∗x− x∗yx∗ + 2.

Evaluating f on a pair of non self-adjoint matrices is left to the reader.

1.2.2 Matrices of nc Polynomials

It is occasionally useful in the larger theory of free analysis (e. g. when
construction the free topology in section 2.3.1 and when characterizing
the zero sets of nc polynomials in chapter 3) to consider matrices where
the entries are nc polynomials. Formally, let R⟨x⟩k×k denote the set
of k× k matrices with entries in R⟨x⟩.6 We can naturally extend the
involution ∗ on R⟨x⟩ to our matrices by applying ∗ component wise
and taking the transpose of the matrix.7

5 For the remainder of this chapter, we will work with R⟨x⟩, but an identical construc-
tion holds for C⟨x⟩.

6 Some sources additionally consider non-square matrices but this is rare.
7 We could likewise define R⟨x, x∗⟩ and extend the corresponding involution.



1.2 extending multi-variable functions 9

Given some δ ∈ R⟨x⟩k×k a matrix of nc polynomials, and X ∈ H
g
n

there is a natural evaluation map.

εδ : Hn
g −→ Mnk(C)

X 7−→ δ(X)

given by evaluating each polynomial in δ at X and then viewing the
result at a block k× k where each block is an n× n matrix.

Example i.7. Define δ ∈ R⟨x, y⟩2×2 as

δ(x, y) =

[
x2 − xyx + 1 xy− yx

x4 y3 − 5xy + 3

]
.

Then

δ∗(x, y) =

[
x2 − xyx + 1 yx− xy

1
2

(
x4 + y4)− ( 1

2 X + 1
2Y

)4 y3 − 5yx + 3

]
.

For an evaluation, we will once again let

X =

[
4 2

2 2

]
and Y =

[
2 0

0 0

]
.

We already know what the evaluations of the first column from examples i.2
and i.5, so we need only complute the second column.

XY−YX =

[
0 −4

4 0

]

Y3 − 5XY + 3 =

[
−29 0

−20 3

]
.

And thus,

δ(X, Y) =


−11 −4 0 −4

−4 1 4 0

164 120 −29 0

120 84 −20 3

 .





2
A S E C O N D AT T E M P T

In seeking a more general theory, the functional calculus defined last
chapter is insufficient—it would be useful to be able to define new
functions instead of simply lifting polynomials to matrix domains. In
a move that will feel familiar to any good student of mathematics, we
will treat the set of self-adjoint matrices and nc polynomials as proto-
typical examples of a more general mathematical object, the so-called
Matrix Universe. After defining this new space and the natural maps
in sections 2.1 and 2.2, we turn our attention to various topologies
placed on matrix universes in section 2.3. While the beginnings of
modern free analysis followed chapter 1 (albeit with the usual bumps
in the road that accompany research), contemporary free analysis
looks much more like this chapter.

2.1 matrix universes

Beyond the functional calculus, it becomes useful to construct general
functions on spaces of matrices—to do so, we must make this idea of
“spaces of matrices” concrete. The largest such space is the so-called
Matrix Universe—consisting of g-tuples of matrices of all sizes:

Mg :=
∞⋃

n=1

(Mn(C))g

By convention, when we consider some X =
(
X1, . . . , Xg

)
∈ Mg, we

require that the Xi are all the same size. SinceMg is such a large set,
we often want to deal with subsets that still carry some of the implicit
structure ofMg.

Definition i.8 (Free Set). We say D ⊂Mg is a free set (also called an nc
set) if it is closed with respect to direct sums and unitary conjugation. That is

1. X, Y ∈ D means X⊕Y ∈ D.

2. For X, U like-size matrices with U unitary and X ∈ D, then UXU∗ =(
UX1U∗, . . . , UXgU∗

)
∈ D.

For the remainder of this text, D will denote some free set. Using
the terminology of [17], let Dn = D ∩Mn(C)g be the level-wise slice
of all n× n matrices in D. We say that D is nc open1 (resp. connected,
simply connected, bounded) if each Dn is open (resp. connected,

1 The topology ofMg is still in flux and there is not a canonical topology. See section
2.3 for the details

11



12 a second attempt

simply connected, bounded). An nc domain is an open, connected
free set. Finally, we say that D is differentiable if each Dn is an open
C1 manifold where the complex tangent space of every X ∈ Dn is all
of Mn(C)g. Given some X ∈ Mg, there are three associated sets which
capture the structure of free sets.

Definition i.9 (Similarity Envelope). Given X ∈ Mg, a tuple of n× n
matrices, the similarity envelope of X is the set

{U∗XU | U ∈ Un}.

Definition i.10 (Fiber). Given X ∈ Mg, a tuple of n× n matrices, the
fiber of X is the set

{X⊕k | k ∈N}.

Definition i.11 (Envelope). Given X ∈ Mg, a tuple of n× n matrices, the
envelope of X is the set

{U∗X⊕kU | k ∈N, U ∈ Ukn}.

Notice that if X ∈ D, then the entire envelope of X is automatically
in D as well! Further, as shown in example i.5, polynomials respect the
envelope of a matrix in a particularly well-behaved way. Colloquially,
we think of all points in the envelope of X as “the same”—this notion
is explored in section 2.3 and throughout chapter 4.

In the context of sections 1.1 and 1.2 , the domains in the functional
calculus was the self adjoint matrix universe: Hg =

⋃∞
n=1 Hn

g. Hg is a
differentiable, connected free set.

OnMg, we define a product that resembles the inner product on
Cn which will be used extensively throughout chapters 3 and 4. Given
A, B ∈ Mg which are g-tuples of n× n matrices:

· :Mg ×Mg −→ Mn(C)

·(A, B) = A · B 7−→
g

∑
i=1

AiBi

If we combine this product with the trace, we get a bilinear form on
Mg which functions like an inner product given by tr(A · B). It will
be particularly useful in chapter 4 as well as for defining the gradient
of a function.

2.2 tracial functions and uniqueness of the gradient

Now that we have Md, we can work with general functions on our
matrix universe. As a whole, free analysis is concerned with so-called
free functions, which are graded and respect direct sums and unitary
conjugation.
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Definition i.12 (Free Function). A function f : D →Md̂ is called free if

1. f (X⊕Y) = f (X)⊕ f (Y)

2. f (UXU∗) = f (U) f (X) f (U∗) where X and U are like-size and U is
unitary.

Before moving on to the other classes of functions on Mg, it is
worth noting that free functions are defined in this way precisely because
polynomials have this same behavior. Free functions, then, are those
which behave like polynomials with respect to the implicit structure
of free sets. The two other classes of functions we are concerned with
are those which act like the trace and the determinant:

Definition i.13 (Determinantal Free Function). A function f : D → C

is a determinantal free function if

1. f (X⊕Y) = f (X) f (Y)

2. f (UXU∗) = f (X) where X and U are like-size and U is unitary.

Definition i.14 (Tracial Free Function). A function f : D → C is a
tracial free function if

1. f (X⊕Y) = f (X) + f (Y)

2. f (UXU∗) = f (X) where X and U are like-size and U is unitary.

It is worth noting that, while they share the moniker of free, deter-
minantal and tracial functions are not free functions. Since these three
classes of functions all contain the word “free,” we will often drop this
qualifier and only refer to determinantal, tracial, and free functions.
For any of theses functions, we can define the directional derivative
(Definition i.3) identically, however, it is only tracial functions which
inherit the gradient mentioned section 1.1. Similarly to traditional
multivariable calculus we define the gradient via its relationship to
the directional derivative:

Definition i.15 (Free Gradient). Given a tracial free function f , the free
gradient, ∇ f , is the unique free function satisfying

tr (H · ∇ f (X)) = D f (X)[H].

It is not-at-all obvious that such a ∇ f should be unique—after all
any linear combination of commutators has trace zero. To show the
uniqueness of ∇ f , we will first restrict ourselves to single variable
functions. In the case that f is a single-variable function we can replace
∇ f with the traditional derivative, f ′, as seen in [19, Thm 3.3].

Theorem i.16. Let f : (a, b)→ R be a C1 function. Then (in the functional
calculus of section 1.1)

tr D f (X)[H] = tr
(

H f ′(X)
)

.
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The proof in [19] simply asserts the uniqueness of a function g(X)

satisfying tr D f (X)[H] = tr(Hg(X)) and then shows that g(x) = f ′(x)
for x ∈ (a, b). Instead, we can construct such a g and recover the
theorem along the way:

Proof. We start with a construction from Bhatia’s Matrix Analysis [5]:
Let f ∈ C1(I) and define f [1] on I × I by

f [1](λ, µ) =


f (λ)− f (µ)

λ−µ λ ̸= µ

f ′(λ) λ = µ.

We call f [1](λ, µ) the first divided difference of f at (λ, µ). If Λ is a
diagonal matrix with entries {λi}, we may extend f to accept Λ by
defining the (i, j)-entry of f [1](Λ) to be f [1](λi, λj). If A is a self adjoint
matrix with A = UΛU∗, then we define f [1](A) = U f [1](Λ)U∗. Now
we borrow a theorem from Bhatia:

Theorem i.17 (Bhatia V.3.3). Let f ∈ C1(I) and let A be a self adjoint
matrix with all eigenvalues in I. Then

D f (A)[H] = f [1](A) ◦ H,

where ◦ denotes the Schur-product2 in a basis where A is diagonal.

That is, if A = UΛU∗, then

D f (A)[H] = U
(

f [1](Λ) ◦ (U∗HU)
)

U∗.

To prove our claim, we need to take the trace of both sides. Since trace
is invariant under a change of basis, it is clear that

tr D f (A)[H] = tr
(

f [1](Λ) ◦ (U∗HU)
)

.

If U = uij, U∗ = uij and H = hij, then the (i, j)-entry of U∗HU is

(U∗HU)ij = ∑
k

∑
ℓ

uikhkℓuℓj.

While the structure of f [1](Λ) is a bit unruly, our diagonal entries are
f ′(λ). This means that when we take the trace of the Schur product,
we have

∑
k

∑
ℓ

∑
i

f ′(λi)uikhkℓuℓi.

Now consider the matrix product U diag{ f ′(λ1), . . . , f ′(λn)}U∗H.
Since one of our terms is diagonal, the trace of this multiplication is
simple:

tr U diag{ f ′(λ1), . . . , f ′(λn)}U∗H = ∑
k

∑
ℓ

∑
i

uik f ′(λk)ukℓhℓi

2 Entrywise
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Since uik, ukℓ, hℓi ∈ C they commute. We can then relabel our indices
i 7→ ℓ ℓ 7→ k k 7→ i to get

tr U diag{ f ′(λ1), . . . , f ′(λn)}U∗H = ∑
k

∑
ℓ

∑
i

f ′(λi)uikhkℓuℓi,

So, for every direction H, we have that

tr
(
U diag{ f ′(λ1), . . . , f ′(λn)}U∗H

)
= tr

(
f [1](Λ) ◦ (U∗HU)

)
.

By picking the “correct” H, 3 we conclude that there is a unique
quantity g(X) satisfying

tr D f (X)[H] = tr(Hg(X)).

In particular, g(X) = U diag{ f ′(λ1), . . . , f ′(λn)}U∗. But, recall that
X = UΛU so, in the functional calculus, g(X) = f ′(X). Making this
substitution, we have the required result:

tr D f (X)[H] = tr(H f ′(X)).

■

With our theorem proven, we turn our attention back to the ∇ f .
The single variable case motivates that ∇ f should correspond to the
standard gradient from vector calculus. With some work, the above
proof lifts the multi-variable case.

The careful reader will note that the above theorem (even if lifted to
the multivariable case) does not immediately give us the uniqueness
of ∇ f —after all, the theorem requires free functions and that there
is a trace on both sides. Thankfully, both of these are fairly easy to
deal with. For the former objection is handed easily; since D f (X)[H]

is a scalar function, so adding a trace doesn’t affect the equation. For
the latter, we present the following proof of “trace duality.” While
the theorem still refers to free functions, the technique of picking
coordinate matrices is standard4 and can be easily reused to show the
uniqueness of ∇ f .5

Theorem i.18 (Trace Duality). Let f , g be free functionsMg →Mg̃. If
tr(H · f ) = tr(H · g) for all tuples H, then f = g.

Proof. Since the trace relation holds for all H, we may choose our H
carefully to show the equality of f and g. Say that H, f (X), g(X) are
g-tuples of matrices—we will first show that f1 = g1 and we will do
so entry by entry. Let Eij be the matrix will all zeroes and a 1 in the
(i, j)-entry. Now let H = (Eji, 0, . . . , 0). So tr Eji f1(X) = tr Ejig1(X). In

3 See the proof of i.18 for the details of how to pick the H’s
4 The technique is rarely used in the literature. Instead it is assumed that the reader can

use the trick to verify statements which are left unproven.
5 If the reader is still unconvinced, see the discussion of tr( · ) as an “inner product”

onMg in section 4.5.
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our products, the only elements on the diagonal are ( f1(X))ij and
(g1(X))ij, so when we take the trace we have ( f1(X))ij = (g1(X))ij. If
we do this for every (i, j), we see that f1(X) = g1(X). Similarly, we can
choose H = (0, Eji, 0, . . . , 0) for each i, j to show that f2(X) = g2(X)

and so on. Since f (X) = g(X) for each X ∈ Mg, it follows that
f = g. ■

Admittedly, there is a slight complication that is overlooked in the
above proof when it comes to the domains of f and g. Where these
domains overlap, we can consider them as the same function (and
therefore ∇ f is unique) but if f is defined on D and g is defined on D̃,
then the above proof only holds on D ∩ D̃. This complication occurs
semi-frequently in free analysis, but in general is swept under the
rug—if two free functions agree the intersection of their domains, it
is convention to consider them equivalent. Examples of such f and g
abound when considering rational functions, which are explored in
section 2.5.

2.3 the topology of matrix universes

At the time of writing, there is no “canonical topology” forMg. For a
long time it seemed like the free topology (to be defined below) was
the obvious choice, but recent work (c.f. [16]) has implied that the
free topology does not put enough structure onMg. See [2] for a full
treatment of the common topologies onMg.

A naive approach to a topology on M =
⋃

n Mn(C) would be
the disjoint union topology—which is then extended do a topology
on Mg via the product topology. Notice, however that this ignores
a significant amount of the implicit structure of nc sets as we get
a disconnected space with countable many connected components.
Topologically, this is means that means that

H•(D) =
⊕
n∈N

H•(Dn).

At first glance, this seems fine enough, but it ignores the fact that for
X ∈ D we require X⊕k ∈ D for all k and U∗XU ∈ D for all unitary U.
In a sense, we think of the all the direct sums of X and its similarity
envelope as “the same.” In light of this, if ∼ is the equivalence relation
that X ∼ Y if Y = X⊕k or Y = U∗XU , then any useful topological
theory on D ⊂ Mg should descend to classic theory on D⧸∼. One
needs only look at H0(D) to see that the naive approach fails to give
useful information. It should be the case that H0(Mg) is Z but in the
disjoint union topology it is easy to see

H0(Mg) =
⊕
n∈N

Z,

which does not behave as we would expect.
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2.3.1 Admissible Topologies

In light of the above discussion, we will present some of the candidate
topologies which show some promise in understanding the topology
on Mg and its subsets. Let D ⊂ Mg be a nc bounded open set
(recall that this means that D is closed under direct sums and unitary
conjugation, and that each Dn is a bounded open set in Mn(C)g) and
let

B = {D | D is an nc bounded open set}.

It is not difficult to se that B is the basis for a topology onMg, called
the fine topology. Currently, there is not a “standard” topology for
Mg. Any topology, τ, onMg is considered admissable if it basis is a
subset of B—i. e. it has a basis of nc bounded open sets.

Example i.19. The fine topology is often very convenient as we can leverage
the level-wise open-ness of the basis. Let D ⊂ M denote the set of diago-
nalizable matrices. We seek to show that D is dense in M. Let D ∈ B be
nonempty. Since D is open inM, we know that Dn is open in Mn(C). But
Dn is dense in Mn(C), so Dn ∩D ̸= ∅. It follows that D ∩D ̸= ∅, and so
D is dense inM.

Of course, a similar argument works inMg. This gives an powerful boost
to the functional calculi discussed in chapter 1. While we worked over the
self adjoint matrices, one can develop a nearly identical functional calculus
for diagonalizable matrices. Since the diagonalizable matrices are dense in
Mg, however, we obtain a function on the entire domain by via a continuous
extension off of the diagonalizable matrices! This gives us a way to make
sense of the free functions

f (X, Y) = eXeY, g(X, Y) = eX+Y

both of which mapM2 →M.

A slightly more restrictive topology (that seems to show some
promise in the eyes of the author) is the fat topology. For n ∈ N,
r ∈ R+, and X ∈ Mg

n, we first define a matricial polydisc

Dn(X, r) := {A ∈ Mg | max
1≤i≤g

∥Xi − Ai∥ < r}.

Now we sweep Dn through all direct sum copies of X:

D(X, r) :=
∞⋃

k=1

Dkn(X⊕k, r)

Finally, we take the similarity envelope of D(X, r)

F(X, r) :=
∞⋃

n=1

⋃
U∈Un

U∗
(

D(X, r) ∩Mg
n
)

U
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Both the fine and the fat topologies admit implicit function theorems—
which are discussed (in brief) in section 2.4.

The final candidate topology is the aforementioned free topology.
Recall that R⟨x⟩ is the algebra of nc polynomials over the real numbers
and that R⟨x⟩k×k is the set of k× k matrices with entries in R⟨x⟩. Let
δ ∈ R⟨x⟩k×k and define

Gδ = {x ∈ Mg | ∥δ(x)∥ < 1}.

For x ∈ Mn(C), ∥ · ∥ is the operator norm in B(Ck ⊗ Cn). This may
seem strange 6 but the level-wise definition allows the norm to “play
nice” with direct sums. The set of all Gδ as k ranges over Z+ form
the basis for the free topology. Indeed, any X ∈ Mg is trivially in
one of the Gδ (take δ = X) and with some work one can show that
Gδ1 ∩ Gδ2 = Gδ1⊕δ2 so we do, indeed, have a basis. All that is needed
to satisfy the axioms for a base is that Gδ1 ∩ Gδ2 ⊃ Gδ1⊕δ2 . In fact if
one chose a more “standard” norm for δ(X) above (e. g.the Frobenius
norm) one gets the needed inclusion. The benefit of the strange norm,
however, is that we get equality here instead of inclusion.

2.4 free analogues of classical results

In general, efforts to reprove classical results from single and several
variable complex analysis have been successful. A full treatise of the
results proven before 2020 can be found in [3]—but we will include a
handful here.

Among the many astounding results is the following characteriza-
tion of holomorphic functions in admissible topologies:

Theorem i.20 (Locally Bounded Implies Analytic). Let D be an nc
domain and f a free function on D. If f is locally bounded on each Dn, then
f is an analytic function of the entries of the matrices at each level n.

A proof for this (rather suprising) result is given in [2]. With dif-
ferent topologies come different analytic functions. In light of this, if
the topology is not understood functions are usually referred to as
{fine/fat/free} holomorphic. As mentioned above, both the fine and fat
topologies have implicit function theorems. The fat implicit function
theorem requires a significant amount more work to state, but it can
be found in [3].

6 The author would like to note that it is, in fact, strange.
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Theorem i.21 (Fine Implicit Function Theorem). Let D ⊂ Mg be an
nc domain. Let Φ be a fine holomorphic map D → Mg. The following
equivalent:

1. Φ is injective on D

2. DΦ(X)[H] is nonsingular for every X ∈ D and like-size H ∈ Mg.

3. the function Φ−1 exists and is a fine holomorphic map.

Various Null- and Positivstellensatz 7 exist throughout the literature
extending Hilbert’s famous Nullstellensatz in algebraic geometry—
many of which utilize the idea of so-called “atomic” matrices of nc
polynomials (defined in ii.12). See [11] for the specifics.

In [1], Agler and McCarthy prove a free analogue of the Oka-Weil
theorem: any free holomorphic function on a compact set can be
uniformly approximated by polynomials. Unfortunately, it was later
proven in [20] and [4] that the only compact sets in the Mg are
the envelope of finitely many points, which substantially lessens the
strength of Agler and McCarthy’s result.

2.5 nc rational functions

While polynomials were fairly simply to lift to the noncommutative
setting, dealing with rational functions is a bit more complex. In depth
discussion of nc rational functions descends quickly into abstract
nonsense, so we will only cover the basics and will not go beyond
what is needed for the work done in the rest of this thesis.

Definition i.22 (nc Rational Expression). An nc rational expression
(alternativey a free rational expression) in noncommuting indeterminants,
x1, . . . , xg is a syntactically valid expression of those indeterminants involv-
ing addition, multiplicatoin, inverses, and scalar multiplication.

For example, the following are examples of free rational expressions
in two variables:

x1x2 + x2x1(x1 − x2)
−1, (2x2

2x−1
1 + (x1x2 − x2x1)

−1),

(x2(1− x1x2)− (1− x2x1)x2)
−1.

The careful reader will notice, however, that one of these expressions
is not like the other. If we were to evaluate these expression on tuples
of matrices, there is no pair for which (x2(1− x1x2)− (1− x2x1)x2)−1

is defined. This is an example of a degenerate rational expression.
Formally, an nc rational expression is nondegenerate if there is at least
one X ∈ Mg such that r(X) is defined.

When seeking to make rational functions out of a nondegenerate ra-
tional expression, one encounters significant difficulties. For example,

x1 − x1 + x−1
2 x2 − 1 and 0

7 And even a QuadratischePositivstellensatz!
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are syntactically distinct nc rational expressions, have wildly different
domains, yet whenever their domains of evaluation align, they will
give the same evaluation. With the likes of the Identity Theorem from
complex analysis one would like to say that these are the same function.
In light of this, nc rational functions are defined via equivalence classes.
We say two rational expressions, r1, r2, are equivalent if r1(X) = r2(X)

whenever both expressions are defined.
Unfortunately, this introduces a new wrinkle: what is the domain of

the equivalence class? Usually one simply works with the domain of
the representative chosen. With sufficiently well behaved nc rational
functions, we have a realization theorem (given below) that gives us a
“nice” representative.

Just like the polynomial case, we often consider matrices of nc ra-
tional functions. Chapter 3 explores the algebraic geometry of nc
polynomials and rational functions. Thankfully, however, we do not
need any of the in depth theory of rational functions. [10] contains
a slightly broader introduction from an analytical lens while [7] pro-
vides a (more complete) algebraic treatment. The only theorem we
will need comes from the latter:

Theorem i.23. For any nondegenerate rational expression, r, there is a linear
square matrix of polynomials, L, and rectangular constants b, c such that
r = b∗L−1c—where L−1 is defined wherever r is defined.



Part II

T H E A L G E B R A I C G E O M E T RY A N D T O P O L O G Y
O F M AT R I X D O M A I N S

“Algebra is the offer made by the devil to the mathematician. The
devil says: I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvelous machine.”

— Michael Francis Atiyah





3
Z E R O S E T S A N D P R I N C I P L E D I V I S O R S

3.1 varieties , classical and free

In the classical case, varieties are fairly easily to classify. Given some
(commutative) polynomial, f ∈ C[x1, . . . , xg] we define the zero set

V( f ) = {a ∈ An | f (a) = 0},

where An is complex affine n-space. Varieties (both affine and projec-
tive) are well studied in algebraic geometry (Hartshorne’s Alegbraic
Geometry [8] is a standard introduction). Of particular interest is a geo-
metric invariant of a variety called a divisor. While classical divisors
require robust machinery to construct formally1 one can think of them
(loosely) as formal sums of codimension one subvarieties. The concept
of a divisor lift naturally to the noncommutative setting, although
varieties are a touch more complex.

Before we return to the noncommutative setting, however, it is work
making a quick remark on what topology we will adopt for the rest of
this thesis. We will be using the conventions mentioned in section 2.1:
D ⊂Mg open if each Dn is open—these are precisely the basic open
sets in the fine topology. Given X, Y ∈ D, it is not generally true that
we can separate X and Y with open sets. However if Y is not in the
similarity envelope of X and X and Y have disjoint fibers, then we
can separate them! Motivated by definitions in section 4.4 we call a
topology satisfying this condition (Hausdorff outside of the similarity
envelope and fiber) essentially Hausdorff.

Let f be a matrix of polynomials onMg. Unlike the classical case,
it is not immediate what should be meant by f (X) = 0—is it enough
for f (X) to be singular, or should f (X) be the zero matrix? In light of
this ambiguity, we make three definitions.

Definition ii.1 (Singular Set). Let f be a matrix of nc polynomials. The
n-Singular Set of f is

Zn( f ) = {X ∈ Mn(C) | det f (X) = 0}.

The Singular Set of f is

Z ( f ) =
⋃

n∈N

Zn( f ).

Definition ii.2 (Directional Singular Set). Let f be a matrix of nc poly-
nomials. Associated with the singular set is the n-Directional Singular
Set:

Z dir
n ( f ) = {(X, v) ∈ Mn(C)×Cn | f (X)v = 0}.

1 Schemes, in particular.

23
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The Directional Singular Set of f is

Z dir( f ) =
⋃

n∈N

Z dir
n ( f ).

Definition ii.3 (Zero Set). Let f be a matrix of nc polynomials. The n-Zero
Set of f is

Vn( f ) = {X ∈ Mn(C) | f (X) = 0}.

The Zero Set of f is

V ( f ) =
⋃

n∈N

Vn( f ).

While the singular set encodes the matrices for which f (X) has a
nontrivial kernel, the directional singular set bundles this information
together with the kernel itself. Section 6 of Helton’s Free Convex Al-
gebraic Geometry [10] shows how this can is analogous to the tangent
plane of a classical variety. While it may seem counter intuitive to use
a script “Z” for the singular set instead of the zero set, the singular set
of a free function is (in many cases) a more natural generalization of
varieties. One needs to be careful when interfacing with the literature
as these definitions (including which of these three sets is the “zero
set”) are not universal and each author seems to make their own
choices.

Over the past decade, many author have generated Null- and Posi-
tivstellensatz for these three sets. In particular, [11] treats singular and
zero sets while [12] treats the directional singular set.

3.2 principal divisors

Recall that given a differentiable traical free function f , the free gradi-
ent, ∇ f is the unique free functions satisfying

tr(H · ∇ f ) = D f (X)[H]

for all directions H. On the other hand, for every square 2 free function,
g, we can associate a determinantal function det g—which is defined
in the obvious way. If f is a nontrivial determinantal function, then
there is an induced tracial function, log f wherever f is nonzero.

Definition ii.4 (Principal Divisors). Let f be a nonzero determinantal
free function. Then the principal divisor of f is

div f = ∇ log f .

Alternatively, if g is square free function, then the principal divisor of g is

div g = ∇ log det g

2 Meaning the output of g is a square matrix.
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Before exploring the properties of div f , it is worth acknowledging
that the notation is overloaded. Unfortunately, the principal divisors of
both free and determinantal functions have significant utility. One has
to be careful whether theorems concern the divisors of free functions
or determinantal ones. In light of this, the author has elected to italicize
“free” and “determinantal” for the remainder of this section whenever
there could be ambiguity should one not read too carefully.

While it is trivial to verify, (simply use the properties of log and the
linearity of ∇), observe that

div f g = div f + div g.

We will use this fact to partially characterize divisors.

Lemma ii.5. Let f , g be C1 nonzero determinantal free functions. Then,

1. There exists an inverible locally constant determinantal function c such
that f = cg if and only if div f = div g.

2. f
g has a C1 extension to the whole domain if and only if there is a
C1 determinantal function h on the whole domain such that div f −
div g = div h.

3. f
g and g

f have a C1 extension to the whole domain if and only if
div f − div g has a continuous extension to the whole domain.

Proof.

1. Suppose such a c existed. Then

div f = div cg = div c + div g.

But because c is locally constant, the presence of∇makes div c =
0,3 so div f = div g.

Conversely, suppose div f = div g. But then

0 = div f − div g

= ∇ (log f − log g)

= ∇ log
f
g

.

And so log f
g is locally constant! It follows that f

g is locally con-
stant and hence we can write g = c f for some locally constant
function c.

2. Suppose there is a function h on the whole domain such that
div h = div f − div g—then by part 1, h differs from f

g by a

3 The fact that c locally constant implies ∇c = 0 is not immediately obvious from the
definition. Thankfully, it is very quick to verify.
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constant but is definied on the entire domain. It is immediate,
then, that f

g extends to the whole domain.

Conversely, suppose h is the continuous extension to the entire
domain. But then

f
g
= h

⇓
log f − log g = log h

⇓
div f − div g = div h.

3. Part 3 follows immediately from part 2.

■

Example ii.6. Consider the free functions f (X, Y) = eXeY, g(X, Y) =

eX+Y. In significant contrast to the classical case, X and Y do not commute,
so f ̸= g. Before we look at the divisors of f and g it is pertinant to consider
how f , g are actually defined. Recall the discussion of example i.19: f and g
are free functions defined on all ofM2, so we are we are outside the functional
calculus of section 1.2, which required self-adjoint matrices. For the values
for which X, Y are diagonalizable, we can evaluate f (X, Y) with the usual
functional calculus. For an X or Y which is and nondiagonalizable, recall
that D2

n is dense in Mn(C)2 so we have level-wise continuous extension of f
(and of course g) to all ofM2.

Now we consider the divisors of f and g. Since they are free functions,
recall that div is actually div det. But then,

div eXeY = ∇ log det
(

eXeY
)

= ∇ log
(

etr Xetr Y
)

= ∇
(

log etr X + log etr Y
)

= ∇ tr X +∇ tr Y

div eX+Y = ∇ log det
(

eX+Y
)

= ∇ log
(

etr(X+Y)
)

= ∇ tr(X + Y)

= ∇ tr X +∇ tr Y

And so we see that div eXeY = div eX+Y.

This example relies on the fact that log plays nicely with etr X and
one might wonder if there is an easier way to compute principal
divisors.

Theorem ii.7. Let f : D → Md̂×d̂ be a C1 free function4 such that
det f ̸≡ 0. Then

tr (H · div f ) = tr
(

D f (X)[H] f (X)−1
)

4 Since the codomain isMd̂×d̂, one can view f as a d̂× d̂ matrix of free functions.
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Proof. We begin by recalling Jacobi’s formula, which gives us a way to
understand the directional derivative of the determant in terms of the
adjugate5 of a matrix. For a matrix X,

D det X[H] = tr (H adj X) .

It will be imperative later in the proof to additionally recall the follow-
ing property of the adjugate: for an invertable matrix X,

adj(X) = det(X)X−1.

With these preliminaries sorted, we continue with the proof. Unrav-
eling the definitions given above, the principal divisor of f (a free
function) is the unique free function on its nonsigular set satisfying

D log det f (X)[H] = tr(H · div f ).

We compute

D log det f (X)[H] =
d
dt

[log det f (X + tH)]

∣∣∣∣
t=0

=
1

det f (X)

(
d
dt

[det f (X + tH)]

∣∣∣∣
t=0

)
=

1
det f (X)

tr
(

d
dt

[ f (X + tH)] adj f (X + tH)

∣∣∣∣
t=0

)
=

1
det f (X)

tr (D f (X)[H] adj f (X))

= tr
(

D f (X)[H]
adj f (X)

det f (X)

)
= tr

(
D f (X)[H] f−1(X)

)
.

■

The next section will treat divisors of polynomial and rational
functions in detail. Before continuing, we give one more example.

Example ii.8. Let f (X, Y) = 1 + XY and g(X, Y) = 1 + YX. Using the
previous theorem, we have that

tr ((H1, H2) · div f ) = tr
(

D f (X, Y)[H1, H2] f (X, Y)−1
)

= tr
(
(H1Y + XH2)(1 + XY)−1

)
= tr

(
H1Y(1 + XY)−1 + H2(1 + XY)−1X

)
= tr

(
(H1, H2) ·

(
Y(1 + XY)−1, (1 + XY)−1X

))
Appealing to trace duality (theorem i.18), we see that

div f =
(

Y(1 + XY)−1, (1 + XY)−1X
)

.

5 The transpose of the cofactor matrix.
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With a nearly identical computation, we recover the principal divisor of g as
well:

div g =
(
(1 + YX)−1Y, X(1 + YX)−1

)
.

Since Y(1 + XY) = (1 + YX)Y, it follows that Y(1 + XY)−1 = (1 +

YX)−1Y, and so div f = div g!

3.3 the group of divisors

For the remainder of this chapter, we will concern ourselves with
the divisors of square matrices of nc polynomials and nc rational
functions. These are all free functions, so div will denote div det. We
begin with a theorem.

Theorem ii.9. Let f , g be square matrices of nc polynomials such that
det f , det g ̸≡ 0. If det f

det g and det g
det f are entire, then div f = div g.

Proof. Consider det f
det g and det g

det f as functions Mn(C) → C. Since both
of these are entire, det f , det g are both never 0—hence any zeroes or
poles that they possess must be at infinity. Suppose that det f

det g is un-
bounded. Depending on how the degrees of det f and det g compare,
there is either a zero or a pole at infinity. But this means that det g

det f has
either a zero or a pole at 0. Either way we have a contradiction, and so
det f
det g is bounded (and entire)—hence constant.

We now appeal to lemma ii.5, part 3. Since det f
det g and its reciprocal

both have C1 extension (namely themselves), we have a levelwise
constant function h such that div f − div g = div h. But clearly div h
is 0, so div f = div g! ■

One of the major themes of the development of principal divisor of
free functions (like in [17]) is that much of the structure of divisors
is an immediate corollary of the structure of det f . For example, the
following theorem is proven almost entirely by its lemma.

Theorem ii.10. Let r be a nondenerate square matrix of nc rational ex-
pressions, such that det r(X) ̸≡ 0. Then there exists square matrices of nc
polynomials p, q such that

div r = div p− div q

Proof. We begin with a lemma.

Lemma ii.11. Let r be a nondenerate square matrix of nc rational expressions,
such that det r(X) ̸≡ 0. Then there exists square matrices of nc polynomials
p, q such that

det r =
det p
det q

= det(pq−1)
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Proof. Recalling theorem i.23, let r = b∗L−1c. We claim that

p =

[
L c

−b 0

]
and q = L.

We see that

det

[
L c

−b 0

]/
det L = det

[
L c

−b 0

]
det

[
L−1 0

0 1

]

= det

[
1 c

−bL−1 0

]
.

Now we recall the formula for the determinant of a block matrix:

det

[
A B

C D

]
= det A det D− CA−1B.

With this in hand, we see that det
[

1 c
−bL−1 0

]
= det b∗L−1c, and we are

done. ■

Now take the div of both sides of the lemma to get the required
result. ■

Just as in the classical case, these is a deep link between factorization
of polynomials, subvarieties, and principal divisors. Before we can
explore this link in the noncommutative setting, we need a definition.

Definition ii.12 (Atomic). A square matrix of nc polynomials p is atomic
if det p ̸≡ 0 and if p1 p2 = p, then either det p1 or det p2 is locally constant.

Atomic square matrices of polynomials function like irrecudible
factors of tradition (commutative) polynomials. While we cannot have
truly “unique” factorization, we do have factorization into atoms. In
[11], Helton et al. prove the following theorem:

Theorem ii.13. Let f be a square matrix of nc polynomials and p an atom.
If we let f = p1 · · · pk be the factorzation of f into atoms, then

Z (p) ⊂ Z ( f )

if and only if det p = det(cpi) for one of the atoms of f and c a nonzero
constant.

With the help of lemma ii.5 (part 1), this says that factorization
is unique up to equivalence of principal divisors. Given any square
matrix of nc rational expressions, theorem ii.10 allows us to express
div r as a linear combination of divisors of matrices of nc polynomials.
Better yet, if we consider the set of all nondegenerate square matrices
of rational expressions, the set of divisors is a free abelian group
generated by the atomic square matrices of nc polynomials!
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T O P O L O G Y

The results of the last three chapters seem hopeful—free analysis
seems to be able to generalize many classical results, as listed in
section 2.4. As previously mentioned, the free topology admits an
Oka-Weil-type theorem. While this is promising, the only compact sets
in the free topology are the envelopes of a finite collection of points.

It is the opinion of the author that all of these topologies (fine, fat,
free, etc.) are definitively broken. As shown above, the free topology
lacks a wealth of compact sets. The fine topology (and therefore any
admissible topology) fails to be T1, let alone Hausdorff—notice that
any open set containing X must also contain X⊕X. Further, given any
free function f on an nc-domain D, if f is locally bounded on each Dn

then f is analytic (admits a power series representation). There are two
ways so view this result: First, one can accept that analytic functions
are a dime a dozen on Mg. Alternatively, one can be skeptical that
the topological structures put on Mg are indeed the natural choice.
The work of J.E. Pascoe in [17] seeks to solve some of these issues by
extending some of the concepts of traditional algebraic topology.

Ω

γ

α

β

Figure 4.1: Analytic continuation along a curve
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4.1 classical monodromy

In the study of functions of a single complex variable,1 many of the
central theorems surround the idea of analytic continuation. Given
some analytic function f on a domain Ω ⊂ C and a larger domain
Ω ⊃ Ω, we can (with sufficient “niceness” conditions) extend f to an
analytic function g on Ω. In particular, given some path γ which start
in Ω we can analytically continue f along γ by recomputing the power
series on overlapping disks with their centers on γ. The standard
picture of this process is fig. 4.1.

Our path γ must avoid any potential poles of f so that we may
compute the power series, but the uniqueness of such an extension
is not obvious. This is where the aforementioned niceness conditions
come into play! For example, consider the setup of fig. 4.2:

C

αβ

γ1

γ2

Ω

Figure 4.2: Two paths in C

Example ii.14. If we let f (x) = Log x be the principle branch of the complex
logarithm the defined on the right half plane, and continue f along γ1 and
γ2 we get two functions f1 and f2 which are analytic at β, but they don’t
agree! In this case, f1(β) and f2(β) disagree by exactly 2πi.

The monodromy theorem gives sufficient conditions for the contin-
uation along two curves to agree:

Theorem ii.15 (Monodromy I). Let γ1, γ2 be two paths from α to β and
Γs be a fixed-endpoint homotopy between them. If f can be continued along
Γs for all s ∈ [0, 1], then the continuations along γ1 and γ2 agree at β.

In the example above, any homotopy between the two paths must
pass through the origin—where Log x fails to be analytic—and hence
the two continuations disagree at β. An equivalent formulation of
the monodromy theorem concerns extending a functions to a larger
domain:

1 There are nearly identical “monodromy” theorems for functions of one and several
complex variables, but we will only treat functions of a single variable in this section.
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Theorem ii.16 (Monodromy II). Let U ⊂ C be a disk in C centered at z0

and f : U → C an analytic function. If W is an open, simply connected set
containing U and f continues along any path γ ⊂W starting at z0, then f
has a unique extension to all of W.

This second formulation gives another perspective on Log x. In the
example, U is a disk around α that stays in the right half plane and W
is C \ {0}. While Log x continues along any path in C \ {0}, the larger
domain is not simply connected, so monodromy fails.

4.2 free monodromy

There is an analogous theorem to theorems ii.15 and ii.16 in the
free setting— initial proven by J.E. Pasocoe in [18]. In the classic
case, the larger set W must be simply connected. In the free setting,
however, the theorem is much more powerful. Before we state and
prove the theorem, recall that free functions respect direct sums—so if
f : D →Mg̃ is a free function,

f (X⊕Y) = f (X)⊕ f (Y).

Given two paths γ1, γ2 ∈ Dn, we can take their direct sum in the
obvious way

(γ1 ⊕ γ2)(t) = γ(t) :=

[
γ1(t)

γ2(t)

]

to obtain a path in D2n. If f is a free function defined on B ⊂ D,
and then we can analytically continue f along γ (presuming that γ

originates in B). If F is the resulting function defined at γ(1), and
F1, F2 are the continuations at γ1(1), γ2(1) respectively, then a routine
computation shows that

F(γ(1)) =

[
F1(γ1(1))

F2(γ2(1))

]
.

With this preliminary result, we can introduce Universal Monodromy.

Theorem ii.17 (Free Universal Monodromy). Let f be an analytic free
function defined on some ball B ⊂ D, for D an open, connected free set. Then
f analytically continues along every path in D if and only if f has a unique
analytic continuation to all of D.

Proof (from [6]). The fact that a unique extension to all of D implies
that f has a continuation along any γ is immediate.

Now suppose that f , a free function, analytically continues along
every path in D. Fix X ∈ Bn and pick some and let γ1, γ2 be two paths
taking X to some Y ∈ Dn. Let F1, F2 be the analytic continuation of
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f along γ1, γ2 respectively. We seek to show that F1 and F2 agree in
some neighborhood of γ1(1)! Let γ̂, γ be paths in D2n defined by

γ̂ =

[
γ1

γ2

]
γ =

[
γ2

γ1

]
.

We have a homotopy between γ̂ and γ given by

Γ(t, s) =

[
cos(s π

2 ) sin(s π
2 )

− sin(s π
2 ) cos(s π

2 )

] [
γ1(t)

γ2(t)

] [
cos(s π

2 ) − sin(s π
2 )

sin(s π
2 ) cos(s π

2 )

]
.

Indeed, one easily checks that

Γ(t, 0) = γ̂ Γ(t, 1) = γ Γ(0, s) = X⊕X Γ(1, s) = Y⊕Y

But since γ̂ and γ are homotopic we can apply the classical (albeit
multivariable) monodromy theorem—so we know that the analytic
continuations of f along γ̂, γ must agree near Y⊕Y. Since free func-
tions respect direct sums, if we let F̂ and F denote the continuations of
f along γ̂, γ respectively, we obtain the following chain of equalities:[

F1(γ1)

F2(γ2)

]
= F̂(γ1⊕ γ2) = F(γ2⊕ γ1) =

[
F2(γ2)

F1(γ1)

]

In particular, we see that F1(γ1) = F2(γ2)—so F1 and F2 agree! ■

In the free case, the “larger” set need not be simply connected.
Analytic continuations of free functions, then, cannot be used to detect
holes in matrix domains. It will turn out, however, that the tracial and
determinental functions introduced in section 2.2 can detect holes and
produce an analogue of the fundamental group!

4.3 the germ of function

As studied in complex analytic and measure theoretic settings, if our
space is sufficiently structured functions are defined by their local
behavior. This idea can be generalized to arbitrary topological spaces
with a construction from algebraic geometry.

Let X be a topological space. To any open set U we associate C(U),
the ring of continuous functions f : U → R (where addition and
multiplication are defined point-wise). Given any V ⊂ U, notice
that for any continuous function f on U, we can restrict f to V and
maintain continuity. This gives two maps:

V ↪−→ U

v 7−→ v

C(U) ↪−→ C(V)

f 7−→ f |V



4.3 the germ of function 35

Notice that the induced function goes the “other way.” This con-
struction is an example of a sheaf of rings2—since C(U) has a ring
structure. We can similarly define sheaves of abelian groups or sets:
to each open set in X we assign a group (or set) such that there are
analogous restriction maps. For our purposes, these will always be
groups/sets of functions and the restriction maps are the natural ones.

We are interested in the general behavior of continuous functions
at some x ∈ X. Define Cx to be the set of all functions defined on a
neighborhood of x:

Cx = { f ∈ C(U) | x ∈ U ⊂ X is open}.

By convention, we refer to elements of Cx as a pair, ( f , U) of a contin-
uous function and the open set on which it is defined. In light of the
inclusion maps given above, it obvious that Cx will have “duplicate”
elements. Therefore, we define an equivalence relation on Cx by

( f , U) ∼ (g, V)⇔ there exists W ⊂ U ∩V where f |W= g |W .

In a sheaf-theoretic context, Cx⧸∼ is called the stalk at x and elements
of the stalk are germs at x. If we are dealing with sheaves of groups
or sets, this construction remains unchanged—i. e. can still define the
stalk at given point. While it will not come into play, it is worth noting
that the stalk inherits the algebraic structure of the original sheaf—e. g.
for a sheaf of rings, the stalk has a natural ring structure.

Sheafs of rings/groups/sets of functions arise naturally in many
areas of mathematics. For example, if X happens to be a smooth
manifold, we may replace C(U) with C∞(U), the ring of smooth
functions into R and then obtain germs of smooth functions. Similarly,
if X is a complex manifold we can construct germs of holomorphic
functions.

Example ii.18. Consider, again, example ii.14. Our function f (x) = Log x
has a germ in Ω. In particular, both f1 and f2 belong to the equivalence class
[( f , Ω)] as all three functions agree on Ω. From this, we see the aptness of
the name germ: germs capture the local behavior of function. Colloquially,
this is the “heart” of a function similar to the germ of seed.3

As usual, lifting this construction to the free context requires some
nuance. For U ⊂ D open, the set of tracial functions on U (denoted
Ctr(U)) does not form a ring—it is closed under addition but not
multiplication. Given two tracial functions, f , g ∈ Ctr(U), we see that

( f + g)(X⊕Y) = f (X⊕Y) + g(X⊕Y)

= f (X) + f (Y) + g(X) + g(Y)

= ( f + g)(X) + ( f + g)(Y)

2 To be completely rigorous, a sheaf needs additional axioms, but the sheaf of continu-
ous functions is one of the prototypical examples so the full defition is not needed in
this context.

3 Sheaf theory abounds with agrarian nomenclature.
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but,

( f g)(X⊕Y) = f (X⊕Y)g(X⊕Y)

= ( f (X) + f (Y))(g(X) + g(Y))

= ( f g)(X) + ( f g)(Y) + f (X)g(Y) + f (Y)g(X).

Thankfully, however, the construction remains unchanged if we
substitute a ring of functions for an abelian group of functions (with
the identity being f ≡ 0 and inverses given by simply negating the
output). In the case of determinental and free functions (which play
a lesser role in the theory to be developed) there is not a natural
algebraic structure for the corresponding sheaves, so they are simply
sheaves of sets.

4.4 the tracial fundamental group

While free monodromy means that free functions cannot detect the
topology of free sets, the same is not true for a general tracial function!
Following [17], we will need some definitions.

Definition ii.19 (Anchored). Let D ⊂Mg be a connected, open, free set.
If there exists a nonempty, simply-connected, open, free B ⊂ D, then we say
that D is anchored.

Definition ii.20 (Global Germ). For D an anchored set, and B ⊂ D its
anchor, we call a tracial function f : B→ C a global germ if it analytically
continues along every path in D which starts in B.

In order to define the fundamental group, we need a notion of a
path in D. Traditionally, a path taking X to Y is a continuous function
γ : [0, 1] → D such that γ(0) = X and γ(1) = Y. Unfortunately, this
disregards the fiber of X and Y. An mentioned in section 2.3, a proper
topological theory should account for identification of the fibers.

Definition ii.21 (Essential Path). A continuous function γ : [0, 1]→ D
essentially takes X to Y if

γ(0) = X⊕ℓ, for some ℓ ∈N

γ(1) = Y⊕k, for some k ∈N.

A path essentially taking X to Y is a path from some element of the
fiber of X to some element of the fiber of Y. Just as in the classical
case, essential paths have a product. First, we need a way to take the
direct sum of paths.

Definition ii.22 (Direct Sum of Paths). Given γ essentially taking X to Y
and β taking Z to W, define

γ⊕ β(t) :=

[
γ(t) 0

0 β(t)

]
.
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n× n

m×m

nℓ× nℓ/mk×mk

X

Y

Y⊕kX⊕ℓ γ

Figure 4.3: A path essentially taking X to Y

It is not, in general, true that γ⊕ β essentially takes X⊕ Z to Y⊕W.
However, if γ essentially takes X to Y, then so does γ⊕ γ. As with
matrices, we define

γ⊕k := γ⊕ · · · ⊕ γ︸ ︷︷ ︸
k times

With these preliminaries, we can now define a concatenation product
for essential paths:

Definition ii.23 (Concatenation Product). Let γ and β be paths taking X
to Y and Y to Z respectively. We define their product to be the path essentially
taking X to Z given by

βγ(t) :=

γ⊕k(2t) t ∈ [0, 0.5)

β⊕ℓ(2t− 1) t ∈ [0.5, 1]

where k and ℓ are positive integers chosen to make γ⊕k and β⊕ℓ like size
matrices for each t ∈ [0, 1].

With essential paths and their product we can build the first ana-
logue of the fundamental group. Let D be an anchored space with B
its anchor. For X ∈ B, we define π1(D, X) to be the set of path essen-
tially taking X to X up to traditional homotopy equivalence and the
relation γ = γ⊕k. Section 6 of [17] explores this construction in detail,
including proving its commutativity. At the moment, not much can be
said about the full fundamental group. Instead, we restrict ourselves
to a different (albeit related) group of paths which are determined by
the analytic continuation of tracial functions.

Given a path essentially taking X to Y we can view the path as
coupled with its endpoint. For B and anchor and f a global germ, we
can reasonably define f (γ): analytically continue f along γ and define

f (γ) :=
1
k

f (Y⊕k).

Since we can evaluate paths with global germs, we can use global
germs to distinguish between certain paths.
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Definition ii.24 (Trace Equivalent). Let B ⊂ D be an anchor and fix
X ∈ B. If γ and β both essentially take X to Y, we say they are trace
equivalent if, for every global germ f and every path δ taking Y to Z,
f (δγ) = f (δβ).

That is, trace equivalent paths are those which cannot be told apart via
analytic continuation of global germ.

Under trace equivalence, the normalization given above implies
γ = γ⊕k since both essentially take X to Y. Further, since homotopic
paths have the same analytic continuation, homotopic paths are trace
equivalent. This allows us to define another fundamental group which
will be our central object of study.

Definition ii.25 (Tracial Fundamental Group). Let D be an anchored
space with B its anchor. For X ∈ B define πtr

1 (D, X) to be the group of trace
equivalent paths essentially taking X to X.

If D is connected, then πtr
1 (D) is independent of our choice of base

point—in fact, the isomorphism from the classical case works here as
well. The identity is given by γX, the constant path at X, and inverses
given by

γ−1(t) = γ(1− t).

Note that, since fixed endpoint homotopic paths are trace equivalent,
πtr

1 (D) is a quotient of π1(D). We can construct a covering space for
D with respect to πtr

1 (D) similar to the construction of the universal
cover in [9].

Definition ii.26 (Tracial Covering Space). For X ∈ B ⊂ D, the tracial
covering space of D is the set of paths (up to tracial equivalence4) in D
starting at X:

Ctr(D) = {[γ] | γ a path essentially taking X to Y}

Since we identify paths with their terminal endpoint, we have the
natural covering space map ρ : Ctr(D)→ D, [γ] 7→ Y. In order for this
map to be continuous (and obey the rest of the axioms of a covering
space), we need to endow Ctr(D) with a topology. We do so be defining
a metric d : Ctr(D)× Ctr(D)→ R∪ {∞}. Let γ1 be a path essentially
taking X to Y and γ2 a path essentially taking X to Z. If Y and Z are
different sizes, set d(γ1, γ2) = ∞. On the other hand, say that both Y
and Z are n× n matrices and let ΓY,Z be the set of path in Dn taking
Y to Z. If ∥γ∥ denotes the length of γ in Cn2

, then we set

d(γ1, γ2) := inf{∥γ∥ | γ ∈ ΓY,Z such that γγ1 = γ2}.

With the topology induced by the metric, one can easily verify that we
do, indeed, have a covering space.

4 From here on, unless otherwise specified, we will only refer to paths up to trace
equivalence.
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Because B is simply connected, for any Y ∈ B there is exactly one
path essentially taking X to Y. In light of this, there is a natural
inclusion B ↪→ Ctr(D). Given a global germ, f , we induce a function
on the covering space (given by f (γ)), which the norm on Ctr(D)

forces to be analytic.

4.5 a bit of cohomology

For a complete treatment of Cohomology, see Allan Hatcher’s famous
Algebraic Topology [9]. As a quick review, given some chain complex

· · · ∂n−1←−− Cn−1
∂n←− Cn

∂n+1←−− Cn+1
∂n+2←−− · · ·

we can form the for the cochain complex as follows: First, fix some
abelian group G. The objects in our cochain complex are C• = Hom(C•, G),
the group of morphisms C• → G. The maps are induced ones

d = ∂∗ : Hom(Cn, G)→ Hom(Cn+1, G).

Put together, this gives us a complex with the arrows reversed

· · · dn−2−−→ Cn−1 dn−1−−→ Cn dn−→ Cn+1 dn+1−−→ · · ·

Computing the homology of this dual complex gives the cohomology
groups, H•(C; G) = Ker d/Im d—which only depend on the homol-
ogy of the original complex and the choice of G. Of particular interest
is De Rham Cohomology, where Ck = Ωk, the set of k-forms on a
manifold, and G = R. In this case, the boundary map is given by the
exterior derivative. For a full construction of De Rham Cohomology,
see [15]. In the classical case we say that a k-form is closed if d f = 0
and exact if there exists a k–1-form, g, such that dg = f . The kth De
Rham cohomology group, then, is the vector space of closed forms
moduluo the exact forms.

A full cohomology theory has yet to be developed in the free setting.
Lifting De Rham cohomology appears promising given thatMg carries
a natural (if complex) manifold structure. While there is not a full
generalization of the exterior derivative, recall that for any tracial
function f , we have that ∇ f is a free function. If T is the set of tracial
functions and F is the set of free functions, we have the beginning of
a cochain complex

0→ T ∇−→ F → · · · .

While we cannot define “closed” and “exact” for general functions on
Mg (in part because we don’t know what the general cochain groups
are) we can define them on F .

Definition ii.27 (Exact). A free function g : D → Mg is exact if there
exists a tracial function f : D → C such that ∇ f = g.
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Definition ii.28 (Closed). A free function g : D →Mg is closed if

tr (K · Dg(X)[H]) = tr (H · Dg(X)[K])

for all directions H, K.

While exactness is a direct lift of the classical condition, our defini-
tion of closed is decidedly unenlightening. Recall from the discussion
at the end of section 2.1 that the combination of the trace of a dot
product is a bilinear form onMg which we can think of as an inner
product.5 Recall that, in the classical case, a function on Rn is exact if
the Jacobian is symmetric. If we imagine Dg(X)[H] as analogous to
the Jacobian of a classical function evaluated in the direction H, and
tr( · ) as the inner product, then the closed condition is exactly the
same! With our definitions, we can define the first tracial cohomology
group.

Definition ii.29 (First Tracial Cohomology Group). The first tracial
cohomology group is the vector space of closed free functions moduluo the
exact free function. We write H1

tr(D).

At first glance, H1
tr(D) seems rather convoluted, arbitrary, and not

particularly useful. 6 Thankfully, we can put the tracial cohomology
group to immediate use in understanding the structure of πtr

1 (D). Re-
call that, by definition, a global germ f : B→ C analytically continues
along every path. It follows, then, that ∇ f must analytically continue
along every path as well—simply analytically continue f along the
path and then take its gradient. Since ∇ f is a free function, universal
monodromy (theorem ii.17) tells us that ∇ f has a unique continuation
to all of D.

At first glance it would seem that ∇ f (for f a global germ) is trivial
in H1

tr(D). This, however, is not the case. A free function g, is exact
if there is a tracial function, f̂ defined on all of D such that g = ∇ f̂ .
Given a global germ f : B → C, it is not always the case that f has a
unique extension to all of D—hence ∇ f is not necessarily exact!

Because monodromy holds for the gradient of a global germ we
know that for any γ ∈ π1

tr(D), f : B→ C a global germ, and γ′ a path
starting our anchor point X, the function

Φ f
γ(γ

′) = f (γ′γ)− f (γ′)

is locally constant as a function on Ctr(D). Because of the metric
we put on Ctr(D), showing that this function is locally constant is
rather finicky. This result has a direct analogue in classical complex
analysis and the proof similar so it will be omitted. We remark that Φ f

γ

measures the action of γ on a global germ f when continuing along a
path γ′. We can use to prove the following technical lemma.

5 Albeit, without conjugates.
6 In all fairness, this is most people’s reaction when the encounter cohomology for the

first time.
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Lemma ii.30. Let D be an nc domain. For any α, β ∈ πtr
1 (D) and global

germ f ,

f (αβ)− f (α) = f (β)− f (γX).

Proof. First, see that f (β) = f (γX β), so we need to show that Φ f
β(α) =

Φ f
β(γX). Let Γ be a path in Ctr(D) defined by

Γ(t) = α
∣∣∣
[0,t]

.

That is, Γ is the path (in the space of paths) where, at each time step Γ
is the path given by going t through α. Continuity of Γ is immediate
from our metric—since the distance between Γ(t) and Γ(t + ε) can be
made arbitrarily small.

Since we have path between γX and α, they are in the same path
component of Ctr(D). Therefore, since Φ f

β is locally constant, it must

be the case that Φ f
β(α) = Φ f

β(γX). ■

Given f a global germ and X ∈ Bn the anchor point and γ ∈ πtr
1 (D),

define

c f (γ) :=
f (γ)− f (γX)

n
.

We remark that, while it is a notation nightmare, c f (γ) = Φ f
γX (γ). c f

maps into C and some routine work with ∇ shows that only that
if c f = c f ′ then, ∇ f and ∇ f ′ are in the same tracial cohomology
class—i. e., c f only depends on the class of ∇ f in H1

tr(D). If we define
ϕg : πtr

1 → C, γ 7→ c f (γ)—where ∇ f is in the tracial cohomology class
of g—we get a homomorphism into C, as

c f (γ1γ2) =
f (γ1γ2)− f (γX)

n

=
f (γ1γ2)− f (γ1) + f (γ1)− f (γX)

n

=
f (γXγ2)− f (γX) + f (γ1)− f (γX)

n
= c f (γ2) + c f (γ1).

Where the penultimate equality uses lemma ii.30. The fact that ϕg is a
homomorphism is the first step to characterizing πtr

1 (D).

Lemma ii.31. The map

Φ : ∏
g∈H1

tr

πtr
1 (D) −→ ∏

g∈H1
tr

C

∏
g∈H1

tr

γ 7−→ ∏
g∈H1

tr

ϕg(γ)

is an injective homomophism.
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Proof. The fact that Φ is a homomorphism is immediate, as each of the
ϕg are. For injectivity, let α, β ∈ πtr

1 (D) such that ∏ ϕg(α) = ∏ ϕg(β).
Seeking to show that α and β are trace equivalent, let f be a global
germ and γ essentially take X to Z. Then, once again using lemma
ii.30,

f (γα)− f (γβ) = f (γα)− f (γ)− ( f (γβ)− f (γ))

= c f (α)− c f (β)

But since ∏ ϕg(α) = ∏ ϕg(β), and c f only depends on the class of ∇ f ,
c f (α) = c f (β). Thus, α and β are trace equivalent and we have shown
injectivity. ■

Note that lemma also tells us that πtr
1 (D) is both commutative and

torsion free as is injects into a commutative, torsion free group (namely
a product of C’s). With this, we can also show that πtr

1 (D) needs to be
divisible as well. First, note that for any path γ,

γ⊕ γX = γX ⊕ γ,

since

H(t, θ) =

[
cos θ sin θ

− sin θ cos θ

]
(γ⊕ γX)

[
cos θ sin θ

− sin θ cos θ

]∗
is a homotopy between the paths. Then we see that

γ =


γ

γ
. . .

γ


︸ ︷︷ ︸

k+1-times

=


γ

γX
. . .

γX




γX

γ
. . .

γX

 · · ·


γX

γX
. . .

γ



=


γ

γX
. . .

γX




γ

γX
. . .

γX

 · · ·


γ

γX
. . .

γX



=


γ

γX
. . .

γX


k

,
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and so πtr
1 (D) is divisible. As there is only one way (up to isomor-

phism, of course) to be a divisible, torsion free group, we have com-
pletely characterized πtr

1 (D)!

Theorem ii.32. For D an anchored free set,

πtr
1 (D) ≃

⊕
i∈I

Q = QI

for some set I.

4.6 computing the tracial fundamental group

While this structure theorem is useful, it gets us no closer to actually
computing πtr

1 (D) or H1
tr(D). Unfortunately, there is nothing analogous

to Van Kampen’s theorem or the Mayer Vietoris sequence. For simple
domains, we have some basic tools. Recall the following definion
relating to abelian groups:

Definition ii.33 (Rank). For an abelian group, G, the rank of G is the
maximal size of a linearly independent subset. That is, it the maximal size of
a set {g1, g2, . . . , gk} ⊂ G such that

k

∑
i=0

nigi = 0 =⇒ ni = 0 for all i.

Theorem ii.34. Let D be a free anchored set. Then,

1. dim H1
tr(D) ≤ rk πtr

1 (D) whenever both quantities are at most count-
ably infinite

2. dim H1
tr(D) ̸= 0 if and only if rk πtr

1 (D) ̸= 0

Proof.

1. We can restrict ourselves to the case where rk πtr
1 (D) is finite.

Let γ1, . . . , γk be a maximally linearly independent set of paths,
and suppose that g1, . . . , gk+1 ∈ H1

tr(D) is linearly independent.
Now consider the matrix [ϕgj(γi)]ij, which is clearly singular.
If (α1, α2, . . . , αk+1) is a nontrivial vector in its kernel, then we
can define g = ∑k+1

j=0 αjgj. By construction, g(γi) = 0 for all i.
Since {γj} is maximal, it follows that g is the zero function,
contradicting our assumption that {gi} is linearly independent.

2. Suppose that rk πtr
1 (D) ̸= 0—hence there is at least one γ, a

global germ, f , and a path β essentially taking X to Z such that
f (β) ̸= f (βγ). It follows that f does not have a global extension
to all of D—hence ∇ f is nontrivial in H1

tr(D).

Conversely, suppose that rk πtr
1 (D) = 0. By part 1 of this same

theorem, dim H1
tr(D) = 0 as well.
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This bound on the dimension of H1
tr(D) is useful, but only if we have

some way to reliably compute πtr
1 (D). Under certain circumstances—

which are not particularly difficult to satisfy—we can compute πtr
1 (D)

as a direct limit of groups by looking at the levelwise homology
groups. Classically, the Hurewicz theorem says that first homology
group of a path connected manifold is isomorphic to the abelization
of the fundamental group. Since we require the domain D to be path
connected, we can leverage this fact to compute πtr

1 (D).
Let D be an anchored, free, path connected set such that each

Dn is nonempty. Choose an anchor B ⊂ D such that each Bn is
also nonempty. If X ∈ B1 is our base point, then we have a natu-
ral gradation on πtr

1 (D). Let πtr
1 (D)n denote the subgroup of paths

contained in Dn. For any m ∈ N, there is a natural inclusion map
πtr

1 (D)n ↪→ πtr
1 (D)mn given by γ 7→ γ⊕m. Since our base point is in on

the “scalar” level, we get a sequence of maps

πtr
1 (D)1 ↪→ πtr

1 (D)2 ↪→ πtr
1 (D)6 ↪→ · · · ↪→ πtr

1 (D)n! ↪→ · · ·

As long as one isn’t too fearful of universal properties, it is not difficult
to show that the direct limit of this sequence is isomorphic to πtr

1 (D).
Using this result for computation requires understanding the structure
of πtr

1 (D)n. Since πtr
1 (D)n only contains paths in Dn, it is isomorphic

to a quotient of some subgroup of π1(Dn)! Moreover, since we are
restricting ourselves to a fixed level, we can leverage the Hurewicz
theorem. Since πtr

1 (D)n is abelian is actually a quotient of H1(Dn).
Thus, we can realize πtr

1 (D) as a direct limit of quotients of H1(Dn!)!

4.7 some examples

The tracial fundamental group is a very new idea, so examples of
computation don’t abound. Pascoe’s paper provides two examples as
exercises. We present a “topological” proofs and invite the reader to
fill in the details.

Example ii.35. Let D = GL(C) =
⋃

n∈N GLn(C). Consider the case where
n = 1. If we view complex numbers as 1× 1 matrices, then {det z = z ̸=
0} = C \ {0}. Then πtr

1 (GL)1 is a quotient of H1(GL1(C)) ≃ Z. Since
there are no nontrivial torsion free quotients of Z, it must be the case that
πtr

1 (GL)1 ≃ Z as well.
Additionally, we know that there is a natural inclusion πtr

1 (GL)1 ↪→
πtr

1 (GL)2, and so πtr
1 (GL)2 contains a copy of Z. Moreover, given some

γ ∈ πtr
1 (GL)1, we have that[

γ

γX

]
∈ πtr

1 (GL)2.
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Recall that if we square this element, then we get γ—so πtr
1 (GL)2 is isomor-

phic to the group

Z

[
1
2

]
.

Our next inclusion πtr
1 (GL)2 ↪→ πtr

1 (GL)6 picks up cube roots for the same
reason—since

γ

γX

γX

 =



γ

γ

γX

γX

γX

γX


.

Taking the square and cube roots simultaneously, we also obtain 6th roots.

πtr
1 (GL)6 ≃ Z

[
1
2

,
1
3

]
In the n-th inclusion, then, we pick up n-th roots and any other factors needed
for closure—and so we adjoin 1

n to the preceeding group. The direct limit is,
therefore,

πtr
1 (GL) ≃ Z

[
1
2

,
1
3

,
1
4

, . . .
]
≃ Q.

Example ii.36. Let Λ ⊂ C be finite and define

GΛ = {X ∈ M | detX− λ ̸= 0 for all λ ∈ Λ}.

We compute πtr
1 (GΛ) just as above. First, see that (GΛ)1 = C \Λ, and so

πtr
1 (GΛ)1 ≃ H1((GΛ)1) ≃ Z|Λ|. Inclusion into πtr

1 (GΛ)2 picks up square
roots, so

πtr
1 (GΛ)2 ≃ Z|Λ|

[
1
2

]
.

Inclusion into πtr
1 (GΛ)6 picks up cube and 6th roots, and so on. Therefore,

in the direct limit, we see

πtr
1 (GΛ) ≃ Q|Λ|.
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